Log Gamma Distribution is a probability density function with positive shape parameters $ {\alpha, \beta } $ and location parameter $ { \mu } $. It is defined by following formula.
${ f(x) = \frac{e^{\beta x}e^{\frac{-e^x}{\alpha}}}{ \alpha^\beta \Gamma(\beta)} \\[7pt] \, where -\infty \gt x \lt \infty }$
Where −
${\alpha}$ = positive shape parameter.
${\beta}$ = positive shape parameter.
${x}$ = random variable.
Following diagram shows the probability density function with three different parameter combinations.