Inverse Gamma Distribution is a reciprocal of gamma probability density function with positive shape parameters $ {\alpha, \beta } $ and location parameter $ { \mu } $. $ {\alpha } $ controls the height. Higher the $ {\alpha } $, taller is the probability density function (PDF). $ {\beta } $ controls the speed. It is defined by following formula.
${ f(x) = \frac{x^{-(\alpha+1)}e^{\frac{-1}{\beta x}}}{ \Gamma(\alpha) \beta^\alpha} \\[7pt] \, where x \gt 0 }$
Where −
${\alpha}$ = positive shape parameter.
${\beta}$ = positive shape parameter.
${x}$ = random variable.
Following diagram shows the probability density function with different parameter combinations.