Data table is used to display the records in a tabular format. It lists out the crossfilter dataset records as explained in this chapter in detail.
Before moving on to draw a data table, we should understand the dc.dataTable class and its methods. It uses a mixin to get the basic functionality of drawing a data table chart, which is defined below −
The dc.dataTable gets all the methods of this mixin and has its own methods to draw the data table, which are explained as follows.
This method is used to get or set the index of the beginning slice. This method is useful when implementing pagination.
Similarly, you can perform the endSlice() function as well.
This method is used to get or set the column functions. It uses the following method to specify the columns to display.
chart.columns([ function(d) { return d.mark; }, function(d) { return d.low; }, function(d) { return d.high; }, function(d) { return numberFormat(d.high - d.low); }, function(d) { return d.volume; } ]);
Here, d represents a row in the data set. We can use HTML to display columns in the data table.
This method is used to perform the group function for the data table.
It is used to sort the order function. If the order is ascending, then the dimension() will use .bottom() to fetch the data, otherwise it will use dimension().top().
Let us make a data table in DC. To do this, we need to follow the steps given below −
Let us add styles in the CSS using the coding given below −
.dc-chart { font-size: 12px; } .dc-table-group { padding-left: 10px; font-size: 14px; font-weight: bold; } .dc-table-column { padding-left: 10px; font-size: 12px; font-weight: normal; }
Here, we have assigned styles for the chart, table-group and the grid-column.
Let us create a variable in DC as shown below −
var barChart = dc.barChart('#line'); // var countChart = dc.dataCount("#mystats"); var tableChart = dc.dataTable("#mytable");
Here, we have assigned a barChart variable id in line, countChart id is mystats and the tableChart id is mytable.
Read the data from the people.csv file as shown below −
d3.csv("data/people.csv", function(errors, people) { var mycrossfilter = crossfilter(people); }
If the data is not present, then it returns an error. Now, assign the data to a crossfilter. Here, we have used the same people.csv file, which was used in our previous charting examples.
It looks like as follows −
id,name,gender,DOB,MaritalStatus,CreditCardType 1,Damaris,Female,1973-02-18,false,visa-electron 2,Barbe,Female,1969-04-10,true,americanexpress 3,Belia,Female,1960-04-16,false,maestro 4,Leoline,Female,1995-01-19,true,bankcard 5,Valentine,Female,1992-04-16,false, 6,Rosanne,Female,1985-01-05,true,bankcard 7,Shalna,Female,1956-11-01,false,jcb 8,Mordy,Male,1990-03-27,true,china-unionpay .......................................... ..........................................
You can set the dimension using the coding given below −
var ageDimension = mycrossfilter.dimension(function(data) { return ~~((Date.now() - new Date(data.DOB)) / (31557600000)) });
After the dimension has been assigned, group the age using the coding given below −
var ageGroup = ageDimension.group().reduceCount();
Now, generate a bar chart using the coding given below −
barChart .width(400) .height(200) .x(d3.scale.linear().domain([15,70])) .yAxisLabel("Count") .xAxisLabel("Age") .elasticY(true) .elasticX(true) .dimension(ageDimension) .group(ageGroup);
Here,
Now, create the data table using the coding given below −
countChart .dimension(mycrossfilter) .group(mycrossfilter.groupAll()); tableChart .dimension(ageDimension) .group(function (data) { return ~~((Date.now() - new Date(data.DOB)) / (31557600000)); })
Here, we have specified the age dimension and group the data.
Now, render the grid using the coding below −
.size(Infinity) .columns(['name', 'DOB']) .sortBy(function (d) { return d.value; }) .order(d3.ascending); barChart.render(); countChart.render(); tableChart.render();
Here, we have sorted the columns using the DOB and sort the records.
The complete code is as follows. Create a web page datatable.html and add the following changes to it.
<html> <head> <title>DC datatable sample</title> <link rel = "stylesheet" type = "text/css" href = "css/bootstrap.css"> <link rel = "stylesheet" type = "text/css" href = "css/dc.css"/> <style> .dc-chart { font-size: 12px; } .dc-table-group { padding-left: 10px; font-size: 14px; font-weight: bold; } .dc-table-column { padding-left: 10px; font-size: 12px; font-weight: normal; } </style> <script src = "js/d3.js"></script> <script src = "js/crossfilter.js"></script> <script src = "js/dc.js"></script> </head> <body> <div> <div style = "width: 600px;"> <div id = "mystats" class = "dc-data-count" style = "float: right"> <span class = "filter-count"></span> selected out of <span class = "total-count"></span> | <a href = "javascript:dc.filterAll(); dc.renderAll();">Reset All</a> </div> </div> <div style = "clear: both; padding-top: 20px;"> <div> <div id = "line"></div> </div> </div> <div style = "clear: both"> <div id = "mytable"></div> </div> </div> <script language = "javascript"> var barChart = dc.barChart('#line'); // , 'myChartGroup'); var countChart = dc.dataCount("#mystats"); var tableChart = dc.dataTable("#mytable"); d3.csv("data/people.csv", function(errors, people) { var mycrossfilter = crossfilter(people); // age dimension var ageDimension = mycrossfilter.dimension(function(data) { return ~~((Date.now() - new Date(data.DOB)) / (31557600000)) }); var ageGroup = ageDimension.group().reduceCount(); barChart .width(400) .height(200) .x(d3.scale.linear().domain([15,70])) .yAxisLabel("Count") .xAxisLabel("Age") .elasticY(true) .elasticX(true) .dimension(ageDimension) .group(ageGroup); countChart .dimension(mycrossfilter) .group(mycrossfilter.groupAll()); tableChart .dimension(ageDimension) .group(function (data) { return ~~((Date.now() - new Date(data.DOB)) / (31557600000)); }) .size(Infinity) .columns(['name', 'DOB']) .sortBy(function (d) { return d.value; }) .order(d3.ascending); barChart.render(); countChart.render(); tableChart.render(); }); </script> </body> </html>
Now, request the browser and you will see the following response.
After selecting an age between 20 and 30, it displays the table records as shown in the screenshot below −