Following quiz provides Multiple Choice Questions (MCQs) related to Multiplication of a mixed number and a whole number. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.
Step 1:
First, we write the mixed number $4\frac{3}{8}$ as an improper fraction
$4\frac{3}{8} = \frac{\left ( 4 \times 8 + 3 \right )}{8} = \frac{35}{8}$; $5 = \frac{5}{1}$
Step 2:
$4\frac{3}{8} \times 5 = \frac{35}{8} \times \frac{5}{1}$
Multiplying numerators and denominators
$\frac{35}{8} \times \frac{5}{1} = \frac{(35 \times 5)}{(8 \times 1)} = 1\frac{75}{8}$
Step 3:
$1\frac{75}{8}$ can be written as a mixed number as follows
$1\frac{75}{8} = 21\frac{7}{8}$;
Step 4:
So, $4\frac{3}{8} \times 5 = 21\frac{7}{8}$
Step 1:
First, we write the mixed number $5\frac{3}{5}$ as an improper fraction
$5\frac{3}{5} = \frac{\left ( 5 \times 5 + 3 \right )}{5} = \frac{28}{5}$; $7 = \frac{7}{1}$
Step 2:
$5\frac{3}{5} \times 7 = \frac{28}{5} \times \frac{7}{1}$
Multiplying numerators and denominators
$\frac{28}{5} \times \frac{7}{1}= \frac{(28 \times 7)}{(5 \times 1)} = 1\frac{96}{5}$
Step 3:
$1\frac{96}{5}$ can be written as a mixed number as follows
$1\frac{96}{5} = 39\frac{1}{5}$
Step 4:
So, $5\frac{3}{5} \times 7 = 39\frac{1}{5}$
Step 1:
First, we write the mixed number $4\frac{1}{5}$ as an improper fraction
$4\frac{1}{5} = \frac{\left ( 4 \times 5 + 1 \right )}{5} = \frac{21}{5} = \frac{21}{5}$; $9 = \frac{9}{1}$
Step 2:
$4\frac{1}{5} \times 9 = \frac{21}{5} \times \frac{9}{1}$
Multiplying numerators and denominators
$\frac{21}{5} \times \frac{9}{1} = \frac{(21 \times 9)}{(5 \times 1)} = \frac{189}{5}$
Step 3:
$\frac{189}{5}$ can be written as a mixed number as follows
$\frac{189}{5} = 37\frac{4}{5}$
Step 4:
So, $4\frac{1}{5} \times 9 = 37\frac{4}{5}$
Step 1:
First, we write the mixed number $7\frac{1}{3}$ as an improper fraction
$7\frac{1}{3} = \frac{\left ( 7 \times 3 + 1 \right )}{3} = \frac{22}{3}$; $4 = \frac{4}{1}$
Step 2:
$7\frac{1}{3} \times 4 = \frac{22}{3} \times \frac{4}{1}$
Multiplying numerators and denominators
$\frac{22}{3} \times \frac{4}{1} = \frac{(22 \times 4)}{(3 \times 1)} = \frac{88}{3}$
Step 3:
$\frac{88}{3}$ can be written as a mixed number as follows
$\frac{88}{3} = 29\frac{1}{3}$
Step 4:
So, $7\frac{1}{3} \times 4 = 29\frac{1}{3}$
Step 1:
First, we write the mixed number $5\frac{2}{7}$ as an improper fraction
$5\frac{2}{7} = \frac{\left ( 5 \times 7 + 2 \right )}{7} = \frac{37}{7}$; $8 = \frac{8}{1}$
Step 2:
$5\frac{2}{7} \times 8 = \frac{37}{7} \times \frac{8}{1}$
Multiplying numerators and denominators
$\frac{37}{7} \times \frac{8}{1} = \frac{(37 \times 8)}{(7 \times 1)} = \frac{296}{7}$
Step 3:
$\frac{296}{7}$ can be written as a mixed number as follows
$\frac{296}{7} = 42\frac{2}{7}$
Step 4:
So, $5\frac{2}{7} \times 8 = 42\frac{2}{7}$
Step 1:
First, we write the mixed number $4\frac{1}{2}$ as an improper fraction.
$4\frac{1}{2} = \frac{\left ( 4 \times 2 + 1 \right )}{2} = \frac{9}{2}$; $9 = \frac{9}{1}$
Step 2:
$4\frac{1}{2} \times 9 = \frac{9}{2} \times \frac{9}{1}$
$\frac{9}{2} \times \frac{9}{1} = \frac{(9 \times 9)}{(2 \times 1)} = \frac{81}{2}$
Step 3:
$\frac{81}{2}$ can be written as a mixed number as follows
$\frac{81}{2} = 40\frac{1}{2}$; So, $4\frac{1}{2} \times 9 = 40\frac{1}{2}$
Step 1:
First, we write the mixed number $3\frac{1}{3}$ as an improper fraction
$3\frac{1}{3} = \frac{\left ( 3 \times 3 + 1 \right )}{3} = \frac{10}{3}$; $8 = \frac{8}{1}$
Step 2:
$3\frac{1}{3} \times 8 = \frac{10}{3} \times \frac{8}{1}$
Multiplying numerators and denominators
$\frac{10}{3} \times \frac{8}{1} = \frac{(10 \times 8)}{(3 \times 1)} = \frac{80}{3}$
Step 3:
$\frac{80}{3}$ can be written as a mixed number as follows
$\frac{80}{3} = 26\frac{2}{3}$
Step 4:
So, $3\frac{1}{3} \times 8 = 26\frac{2}{3}$
Step 1:
First, we write the mixed number $5\frac{1}{4}$ as an improper fraction
$5\frac{1}{4} = \frac{\left ( 5 \times 4 + 1 \right )}{4} = \frac{21}{4}$; $5 = \frac{5}{1}$
Step 2:
$5\frac{1}{4} \times 5 = \frac{21}{4} \times \frac{5}{1}$
Multiplying numerators and denominators
$\frac{21}{4} \times \frac{5}{1} = \frac{(21 \times 5)}{(4 \times 1)} = \frac{105}{4}$
Step 3:
$\frac{105}{4}$ can be written as a mixed number as follows
$\frac{105}{4} = 26\frac{1}{4}$
Step 4:
So, $5\frac{1}{4} \times 5 = 26\frac{1}{4}$
Step 1:
First, we write the mixed number $7\frac{2}{3}$ as an improper fraction.
$7\frac{2}{3} = \frac{\left ( 7 \times 3 + 2 \right )}{3} = \frac{23}{3}$; $5 = \frac{5}{1}$
Step 2:
$7\frac{2}{3} \times 5 = 23//3 \times \frac{5}{1}$
Multiplying numerators and denominators
$\frac{23}{3} \times \frac{5}{1} = \frac{(23 \times 5)}{(3 \times 1)} = \frac{115}{3}$
Step 3:
$\frac{115}{3}$ can be written as a mixed number as follows
$\frac{115}{3} = 38\frac{1}{3}$
Step 4:
So, $7\frac{2}{3} \times 5 = 38\frac{1}{3}$
Step 1:
First, we write the mixed number $5\frac{3}{8}$ as an improper fraction
$5\frac{3}{8} = \frac{\left ( 5 \times 8 + 3 \right )}{8} = \frac{43}{8}$; $4 = \frac{4}{1}$
Step 2:
$5\frac{3}{8} \times 4 = \frac{43}{8} \times \frac{4}{1}$
Multiplying numerators and denominators
$\frac{43}{8} \times \frac{4}{1} = \frac{(43 \times 4)}{(8 \times 1)} = \frac{172}{8}$
Step 3:
$\frac{172}{8}$ can be written as a mixed number as follows
$\frac{172}{8} = 21\frac{4}{8} = 21\frac{1}{2}$
Step 4:
So, $5\frac{3}{8} \times 4 = 21\frac{1}{2}$