Division with a mixed number and a whole number Online Quiz


Advertisements

Following quiz provides Multiple Choice Questions (MCQs) related to Division with a mixed number and a whole number. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Questions and Answers
Q 1 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {5\frac{1}{3} \div 3}$

Answer : A

Explanation

Step 1:

First, we write the mixed number $5\frac{1}{3}$ as an improper fraction.

$5\frac{1}{3} = \frac{\left ( 5 \times 3 + 1 \right )}{3} = \frac{16}{3}$; $3 = \frac{3}{1}$

Step 2:

$5\frac{1}{3} \div 3 = \frac{16}{3} \div \frac{3}{1} = \frac{16}{3} \times \frac{1}{3}$

Multiplying numerators and denominators

$\frac{16}{3} \times \frac{1}{3} = \frac{(16 \times 1)}{(3 \times 3)} = \frac{16}{9}$

Step 3:

$\frac{16}{9}$ can be simplified and written as follows

$\frac{16}{9} = 1\frac{7}{9}$

Step 4:

So, $5\frac{1}{3} \div 3 = 1\frac{7}{9}$

Q 2 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {9\frac{1}{4} \div 8}$

Answer : D

Explanation

Step 1:

First, we write the mixed number $9\frac{1}{4}$ as an improper fraction.

$9\frac{1}{4} = \frac{\left ( 9 \times 4 + 1 \right )}{4} = \frac{37}{4}$; $8 = \frac{8}{1}$

Step 2:

$9\frac{1}{4} \div 8 = \frac{37}{4} \div \frac{8}{1} = \frac{37}{4} \times \frac{1}{8}$

Multiplying numerators and denominators

$\frac{37}{4} \times \frac{1}{8} = \frac{(37 \times 1)}{(4 \times 8)} = \frac{37}{32}$

Step 3:

$\frac{37}{32}$ can be simplified and written as follows

$\frac{37}{32} = 1\frac{5}{32}$

Step 4:

So, $9\frac{1}{4} \div 8 = 1\frac{5}{32}$

Q 3 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {5\frac{2}{7}} \div 4$

Answer : B

Explanation

Step 1:

First, we write the mixed number $5\frac{2}{7}$ as an improper fraction.

$5\frac{2}{7} = \frac{\left ( 5 \times 7 + 2 \right )}{7} = \frac{37}{7}$

Step 2:

$5\frac{2}{7} \div 4 = \frac{37}{7} \div \frac{4}{1} = \frac{37}{7} \times \frac{1}{4}$

Multiplying numerators and denominators

$\frac{37}{7} \times \frac{1}{4} = \frac{(37 \times 1)}{(7 \times 4)} = \frac{37}{28}$

Step 3:

$\frac{37}{28}$ can be simplified and written as follows

$\frac{37}{28} = 1\frac{9}{28}$; So, $5\frac{2}{7} \div 4 = 1\frac{9}{28}$

Q 4 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {9\frac{1}{8} \div 6}$

Answer : C

Explanation

Step 1:

First, we write the mixed number $9\frac{1}{8}$ as an improper fraction.

$9\frac{1}{8} = \frac{\left ( 9 \times 8 + 1 \right )}{8} = \frac{73}{8}$; $6 = \frac{6}{1}$

Step 2:

$9\frac{1}{8} \div 6 = \frac{73}{8} \div \frac{6}{1} = \frac{73}{8} \times \frac{1}{6}$

Multiplying numerators and denominators

$\frac{73}{8} \times \frac{1}{6} = \frac{(73 \times 1)}{(8 \times 6)} = \frac{73}{48}$

Step 3:

$\frac{73}{48}$ can be simplified and written as follows

$\frac{73}{48} = 1\frac{25}{48}$

Step 4:

So, $9\frac{1}{8} \div 6 = 1\frac{25}{48}$

Q 5 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {10\frac{1}{6} \div 9}$

Answer : B

Step 1:

First, we write the mixed number $10\frac{1}{6}$ as an improper fraction.

$10\frac{1}{6} = \frac{\left ( 10 \times 6 + 1 \right )}{6} = \frac{61}{6}$

Step 2:

$10\frac{1}{6} \div 9 = \frac{61}{6} \div \frac{9}{1} = \frac{61}{6} \times \frac{1}{9}$

Multiplying numerators and denominators

$\frac{61}{6} \times \frac{1}{9} = \frac{(61 \times 1)}{(6 \times 9)} = \frac{61}{54}$

Step 3:

$\frac{61}{54}$ can be simplified and written as follows

$\frac{61}{54} = 1\frac{7}{54}$

Step 4:

So, $10\frac{1}{6} \div 9 = 1\frac{7}{54}$

Q 6 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {6\frac{2}{5} \div 4}$

Answer : C

Explanation

Step 1:

First, we write the mixed number $6\frac{2}{5}$ as an improper fraction.

$6\frac{2}{5} = \frac{\left ( 6 \times 5 + 2 \right )}{5} = \frac{32}{5}$

Step 2:

$6\frac{2}{5} \div 4 = \frac{32}{5} \div \frac{4}{1} = \frac{32}{5} \times \frac{1}{4}$

Multiplying numerators and denominators

$\frac{32}{5} \times \frac{1}{4} = \frac{(32 \times 1)}{(5 \times 4)} = \frac{32}{20}$

Step 3:

$\frac{32}{20}$ can be simplified and written as follows

$\frac{32}{20} = 1\frac{12}{20} = 1\frac{3}{5}$

Step 4:

So, $6\frac{2}{5} \div 4 = 1\frac{3}{5}$

Q 7 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {9\frac{1}{3} \div 5}$

Answer : A

Explanation

Step 1:

First, we write the mixed number $9\frac{1}{3}$ as an improper fraction.

$9\frac{1}{3} = \frac{\left ( 9 \times 3 + 1 \right )}{3} = \frac{28}{3}$; $5 = \frac{5}{1}$

Step 2:

$9\frac{1}{3} \div 5 = \frac{28}{3} \div \frac{5}{1} = \frac{28}{3} \times \frac{1}{5}$

Multiplying numerators and denominators

$\frac{28}{3} \times \frac{1}{5} = \frac{(28 \times 1)}{(3 \times 5)} = \frac{28}{15}$

Step 3:

$\frac{28}{15}$ can be simplified and written as follows

$\frac{28}{15} = 1\frac{13}{15}$

Step 4:

So, $9\frac{1}{3} \div 5 = 1\frac{13}{15}$

Q 8 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {7\frac{1}{4} \div 6}$

Answer : D

Explanation

Step 1:

First, we write the mixed number $7\frac{1}{4}$ as an improper fraction.

$7\frac{1}{4} = \frac{\left ( 7 \times 4 + 1 \right )}{4} = \frac{29}{4}$

Step 2:

$7\frac{1}{4} \div 6 = \frac{29}{4} \div \frac{6}{1} = \frac{29}{4} \times \frac{1}{6}$

Multiplying numerators and denominators

$\frac{29}{4} \times \frac{1}{6} = \frac{(29 \times 1)}{(4 \times 6)} = \frac{29}{24}$

Step 3:

$\frac{29}{24}$ can be simplified and written as follows

$\frac{29}{24} = 1\frac{5}{24}$; So, $7\frac{1}{4} \div 6 = 1\frac{5}{24}$

Q 9 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {6\frac{2}{7} \div 5}$

Answer : C

Explanation

Step 1:

First, we write the mixed number $6\frac{2}{7}$ as an improper fraction.

$6\frac{2}{7} = \frac{\left ( 6 \times 7 + 2 \right )}{7} = \frac{44}{7}$; $5 = \frac{5}{1}$

Step 2:

$6\frac{2}{7} \div 5 = \frac{44}{7} \div \frac{5}{1} = \frac{44}{7} \times \frac{1}{5}$

Multiplying numerators and denominators

$\frac{44}{7} \times \frac{1}{5} = \frac{(44 \times 1)}{(7 \times 5)} = \frac{44}{35}$

Step 3:

$\frac{44}{35}$ can be simplified and written as follows

$\frac{44}{35} = 1\frac{9}{35}$

Step 4:

So, $6\frac{2}{7} \div 5 = 1\frac{9}{35}$

Q 10 - Divide. Write your answer as a mixed number in simplest form.

$\mathbf {11\frac{1}{8}} \div 8$

Answer : A

Explanation

Step 1:

First, we write the mixed number $11\frac{1}{8}$ as an improper fraction.

$11\frac{1}{8} = \frac{\left ( 11 \times 8 + 1 \right )}{8} = \frac{89}{8}$; $8 = \frac{8}{1}$

Step 2:

$11\frac{1}{8} \div 8 = \frac{89}{8} \div \frac{8}{1} = \frac{89}{8} \times \frac{1}{8}$

Multiplying numerators and denominators

$\frac{89}{8} \times \frac{1}{8} = \frac{(89 \times 1)}{(8 \times 8)} = \frac{89}{64}$

Step 3:

$\frac{89}{64}$ can be simplified and written as follows

$\frac{89}{64} = 1\frac{25}{64}$

Step 4:

So, $11\frac{1}{8} \div 8 = 1\frac{25}{64}$

division_with_mixed_number_and_whole_number.htm
Advertisements