Following quiz provides Multiple Choice Questions (MCQs) related to Mixed number multiplication. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.
Step 1:
First, we write the mixed number $2\frac{3}{5}$ as an improper fraction
$2\frac{3}{5} = \frac{\left ( 2 \times 5 + 3 \right )}{5} = \frac{13}{5}$
Step 2:
$2\frac{3}{5} \times \frac{3}{4} = \frac{13}{5} \times \frac{3}{4} = \frac{(13 \times 3)}{(5 \times 4)} = \frac{39}{20}$
Step 3:
$\frac{39}{20}$ can be written as a mixed number as follows
$\frac{39}{20} = 1\frac{19}{20}$; So, $2\frac{3}{5} \times \frac{3}{4} = 1\frac{19}{20}$
Step 1:
First, we write the mixed number $3\frac{1}{5}$ as an improper fraction
$3\frac{1}{5} = \frac{\left ( 3 \times 5 + 1 \right )}{5} = \frac{16}{5}$
Step 2:
$3\frac{1}{5} \times \frac{3}{4} = \frac{16}{5} \times \frac{3}{4}$
Cross cancelling 16 and 4 we get
$\frac{16}{5} \times \frac{3}{4} = \frac{4}{5} \times \frac{3}{1} = \frac{(4 \times 3)}{(5 \times 1)} = \frac{12}{5}$
Step 3:
$\frac{12}{5}$ can be written as a mixed number as follows
$\frac{12}{5} = 2\frac{2}{5}$; So, $3\frac{1}{5} \times \frac{3}{4} = 2\frac{2}{5}$
Step 1:
First, we write the mixed number $4\frac{2}{3}$ as an improper fraction
$4\frac{2}{3} = \frac{\left ( 4 \times 3 + 2 \right )}{3} = \frac{14}{3}$
Step 2:
$4\frac{2}{3} \times \frac{3}{5} = \frac{14}{3} \times \frac{3}{5}$
Cross cancelling 3 and 3 we get
$\frac{14}{3} \times \frac{3}{5} = \frac{14}{1} \times \frac{1}{5} = \frac{(14 \times 1)}{(1 \times 5)} = \frac{14}{5}$
Step 3:
$\frac{14}{5}$ can be written as a mixed number as follows
$\frac{14}{5} = 2\frac{4}{5}$; So, $4\frac{2}{3} \times \frac{3}{4} = 2\frac{4}{5}$
Step 1:
First, we write the mixed number $3\frac{3}{4}$ as an improper fraction
$3\frac{3}{4} = \frac{\left ( 3 \times 4 + 3 \right )}{4} = \frac{15}{4}$
Step 2:
$3\frac{3}{4} \times \frac{3}{4} = \frac{15}{4} \times \frac{3}{4} = \frac{(15 \times 3)}{(4 \times 4)} = \frac{45}{16}$
Step 3:
$\frac{45}{16}$ can be written as a mixed number as follows
$\frac{45}{16} = 2\frac{13}{16}$; So, $3\frac{3}{4} \times \frac{3}{4} = 2\frac{13}{16}$
Step 1:
First, we write the mixed number $6\frac{2}{3}$ as an improper fraction
$6\frac{2}{3} = \frac{\left ( 6 \times 3 + 2 \right )}{3} = \frac{20}{3}$
Step 2:
$6\frac{2}{3} \times \frac{3}{7} = \frac{20}{3} \times \frac{3}{7}$
Cross cancelling 3 and 3 we get
$\frac{20}{3} \times \frac{3}{7} = \frac{20}{1} \times \frac{1}{7} = \frac{(20 \times 1)}{(1 \times 7)} = \frac{20}{7}$
Step 3:
$\frac{20}{7}$ can be written as a mixed number as follows
$\frac{20}{7} = 2\frac{6}{7}$; So, $6\frac{2}{3} \times \frac{3}{7} = 2\frac{6}{7}$
Step 1:
First, we write the mixed number $6\frac{3}{8}$ as an improper fraction
$6\frac{3}{8} = \frac{\left ( 6 \times 8 + 3 \right )}{8} = \frac{51}{8}$
Step 2:
$6\frac{3}{8} \times \frac{4}{5} = \frac{51}{8} \times \frac{4}{5}$
Cross cancelling 8 and 4 we get
$\frac{51}{8} \times \frac{4}{5} = \frac{51}{2} \times \frac{1}{5} = \frac{(51 \times 1)}{(2 \times 5)} = \frac{51}{10}$
Step 3:
$\frac{51}{10}$ can be written as a mixed number as follows
$\frac{51}{10} = 5\frac{1}{10}$; So, $6\frac{3}{8} \times \frac{4}{5} = 5\frac{1}{10}$
Step 1:
First, we write the mixed number $8\frac{1}{4}$ as an improper fraction
$8\frac{1}{4} = \frac{\left ( 8 \times 4 + 1 \right )}{4} = \frac{33}{4}$
Step 2:
$8\frac{1}{4} \times \frac{2}{5} = \frac{33}{4} \times \frac{2}{5}$
Cross cancelling 4 and 2 we get
$\frac{33}{4} \times \frac{2}{5} = \frac{33}{2} \times \frac{1}{5} = \frac{(33 \times 1)}{(2 \times 5)} = \frac{33}{10}$
Step 3:
$\frac{33}{10}$ can be written as a mixed number as follows
$\frac{33}{10} = 3\frac{3}{10}$; So, $8\frac{1}{4} \times \frac{2}{5} = 3\frac{3}{10}$
Step 1:
First, we write the mixed number $9\frac{4}{5}$ as an improper fraction.
$9\frac{4}{5} = \frac{\left ( 9 \times 5 + 4 \right )}{5} = \frac{49}{5}$
Step 2:
$9\frac{4}{5} \times \frac{5}{6} = \frac{49}{5} \times \frac{5}{6}$
$\frac{49}{5} \times \frac{5}{6} = \frac{49}{1} \times \frac{1}{6} = \frac{(49 \times 1)}{(1 \times 6)} = \frac{49}{6}$
Step 3:
$\frac{49}{6}$ can be written as a mixed number as follows
$\frac{49}{6} = 8\frac{1}{6}$; So, $9\frac{4}{5} \times \frac{5}{6} = 8\frac{1}{6}$
Step 1:
First, we write the mixed number $4\frac{2}{3}$ as an improper fraction
$4\frac{2}{3} = \frac{\left ( 4 \times 3 + 2 \right )}{3} = \frac{14}{3}$
Step 2:
$4\frac{2}{3} \times \frac{3}{4} = \frac{14}{3} \times \frac{3}{4}$
Cross cancelling 3 and 3 and simplifying we get
$\frac{14}{3} \times \frac{3}{4} = \frac{7}{1} \times \frac{1}{2} = \frac{(7 \times 1)}{(1 \times 2)} = \frac{7}{2}$
Step 3:
$\frac{7}{2}$ can be written as a mixed number as follows
$\frac{7}{2} = 3\frac{1}{2}$; So, $4\frac{2}{3} \times \frac{3}{4} = 3\frac{1}{2}$
Step 1:
First, we write the mixed number $8\frac{3}{4}$ as an improper fraction
$8\frac{3}{4} = \frac{\left ( 8 \times 4 + 3 \right )}{4} = \frac{35}{4}$
Step 2:
$8\frac{3}{4} \times \frac{2}{5} = \frac{35}{4} \times \frac{2}{5}$
Cross cancelling 35 and 5 and simplifying we get
$\frac{35}{4} \times \frac{2}{5} = \frac{7}{2} \times \frac{1}{1} = \frac{(7 \times 1)}{(2 \times 1)} = \frac{7}{2}$
Step 3:
$\frac{7}{2}$ can be written as a mixed number as follows
$\frac{7}{2} = 3\frac{1}{2}$; So, $8\frac{3}{4} \times \frac{2}{5} = 3\frac{1}{2}$