We know that when ω=2πK/N and N→∞,ω becomes a continuous variable and limits summation become −∞ to +∞.
Therefore,
NCk=X(2πNk)=X(ejω)=∞∑n=−∞x(n)e−j2πnkN=∞∑n=−∞x(n)e−jωnDiscrete Time Fourier Transform DTFT
We know that, X(ejω)=∑∞n=−∞x(n)e−jωn
Where, X(ejω) is continuous and periodic in ω and with period 2π.…eq1
Now,
xp(n)=∑N−1k=0NCkej2πnk/N … From Fourier series
xp(n)=12π∑N−1k=0NCkej2πnk/N×2πN
ω becomes continuous and 2πN→dω, because of the reasons cited above.
x(n)=12π∫2πn=0X(ejω)ejωndω…eq2
Inverse Discrete Time Fourier Transform
Symbolically,
x(n)⟺x(ejω)TheFourierTransformpair
Necessary and sufficient condition for existence of Discrete Time Fourier Transform for a non-periodic sequence xn is absolute summable.
i.e.∑∞n=−∞|x(n)|<∞
Linearity : a1x1(n)+a2x2(n)⇔a1X1(ejω)+a2X2(ejω)
Time shifting − x(n−k)⇔e−jωk.X(ejω)
Time Reversal − x(−n)⇔X(e−jω)
Frequency shifting − ejω0nx(n)⇔X(ej(ω−ω0))
Differentiation frequency domain − nx(n)=jddωX(ejω)
Convolution − x1(n)∗x2(n)⇔X1(ejω)×X2(ejω)
Multiplication − x1(n)×x2(n)⇔X1(ejω)∗X2(ejω)
Co-relation − yx1×x2(l)⇔X1(ejω)×X2(ejω)
Modulation theorem − x(n)cosω0n=12[X1(ej(ω+ω0)∗X2(ejw)
Symmetry −x∗(n)⇔X∗(e−jω) ;
x∗(−n)⇔X∗(ejω) ;
Real[x(n)]⇔Xeven(ejω) ;
Imag[x(n)]⇔Xodd(ejω) ;
xeven(n)⇔Real[x(ejω)] ;
xodd(n)⇔Imag[x(ejω)] ;
Parseval’s theorem − ∑∞−∞|x1(n)|2=12π∫π−π|X1(ejω)|2dω
Earlier, we studied sampling in frequency domain. With that basic knowledge, we sample X(ejω) in frequency domain, so that a convenient digital analysis can be done from that sampled data. Hence, DFT is sampled in both time and frequency domain. With the assumption x(n)=xp(n)
Hence, DFT is given by −
X(k)=DFT[x(n)]=X(2πNk)=N−1∑n=0x(n)e−j2πnkN,k=0,1,….,N−1…eq3
And IDFT is given by −
X(n)=IDFT[X(k)]=1N∑N−1k=0X(k)ej2πnkN,n=0,1,….,N−1…eq4
∴x(n)⇔X(k)
It is denoted as WN and defined as WN=e−j2π/N . Its magnitude is always maintained at unity. Phase of WN=−2π/N . It is a vector on unit circle and is used for computational convenience. Mathematically, it can be shown as −
WrN=Wr±NN=Wr±2NN=...
It is function of r and period N.
Consider N = 8, r = 0,1,2,3,….14,15,16,….
⟺W08=W88=W168=...=...=W328=...=1=1∠0
W18=W98=W178=...=...=W338=...=1√2=j1√2=1∠−π4
Let us understand Linear Transformation −
We know that,
DFT(k)=DFT[x(n)]=X(2πNk)=∑N−1n=0x(n).W−nkn;k=0,1,….,N−1
x(n)=IDFT[X(k)]=1N∑N−1k=0X(k).W−nkN;n=0,1,….,N−1
Note − Computation of DFT can be performed with N2 complex multiplication and NN−1 complex addition.
xN=[x(0)x(1)..x(N−1)]NpointvectorofsignalxN
XN=[X(0)X(1)..X(N−1)]NpointvectorofsignalXN
[111......11WNW2N......WN−1N.W2NW4N......W2(N−1)N.1WN−1NW2(N−1)N......W(N−1)(N−1)N]
N - point DFT in matrix term is given by - XN=WNxN
WN⟼ Matrix of linear transformation
Now,xN=W−1NXN
IDFT in Matrix form is given by
xN=1NW∗NXNComparing both the expressions of xN,W−1N=1NW∗N and WN×W∗N=N[I]N×N
Therefore, WN is a linear transformation matrix, an orthogonal unitary matrix.
From periodic property of WN and from its symmetric property, it can be concluded that, Wk+N/2N=−WkN
N-point DFT of a finite duration xn of length N≤L, is equivalent to the N-point DFT of periodic extension of xn, i.e. xp(n) of period N. and xp(n)=∑∞l=−∞x(n−Nl) . Now, if we shift the sequence, which is a periodic sequence by k units to the right, another periodic sequence is obtained. This is known as Circular shift and this is given by,
x′p(n)=xp(n−k)=∞∑l=−∞x(n−k−Nl)The new finite sequence can be represented as
x′p(n)={x′p(n),0≤n≤N−10OtherwiseExample − Let xn= {1,2,4,3}, N = 4,
x′p(n)=x(n−k,moduloN)≡x((n−k))N;ex−ifk=2i.e2unitrightshiftandN=4,
Assumed clockwise direction as positive direction.
We got, x′(n)=x((n−2))4
x′(0)=x((−2))4=x(2)=4
x′(1)=x((−1))4=x(3)=3
x′(2)=x((−2))4=x(0)=1
x′(3)=x((1))4=x(1)=2
Conclusion − Circular shift of N-point sequence is equivalent to a linear shift of its periodic extension and vice versa.
Circularly even sequence − x(N−n)=x(n),1≤n≤N−1
i.e.xp(n)=xp(−n)=xp(N−n)
Conjugate even −xp(n)=x∗p(N−n)
Circularly odd sequence − x(N−n)=−x(n),1≤n≤N−1
i.e.xp(n)=−xp(−n)=−xp(N−n)
Conjugate odd − xp(n)=−x∗p(N−n)
Now, xp(n)=xpe+xpo(n), where,
xpe(n)=12[xp(n)+x∗p(N−n)]
xpo(n)=12[xp(n)−x∗p(N−n)]
For any real signal xn,X(k)=X∗(N−k)
XR(k)=XR(N−k)
Xl(k)=−Xl(N−k)
∠X(k)=−∠X(N−K)
Time reversal − reversing sample about the 0th sample. This is given as;
x((−n))N=x(N−n),0≤n≤N−1
Time reversal is plotting samples of sequence, in clockwise direction i.e. assumed negative direction.
Other important IDFT properties x(n)⟷X(k)
Time reversal − x((−n))N=x(N−n)⟷X((−k))N=X(N−k)
Circular time shift − x((n−l))N⟷X(k)ej2πlk/N
Circular frequency shift − x(n)ej2πln/N⟷X((k−l))N
Complex conjugate properties −
x∗(n)⟷X∗((−k))N=X∗(N−k)and
x∗((−n))N=x∗(N−n)⟷X∗(−k)
Multiplication of two sequence −
x1(n)⟷X1(k)andx2(n)⟷X2(k)
∴x1(n)x2(n)⟷X1(k)ⓃX2(k)
Circular convolution − and multiplication of two DFT
x1(k)Ⓝx2(k)=∑N−1k=0x1(n).x2((m−n))n,m=0,1,2,....,N−1
x1(k)Ⓝx2(k)⟷X1(k).X2(k)
Circular correlation − If x(n)⟷X(k) and y(n)⟷Y(k) , then there exists a cross correlation sequence denoted as ˉYxy such that ˉYxy(l)=∑N−1n=0x(n)y∗((n−l))N=X(k).Y∗(k)
Parseval’s Theorem − If x(n)⟷X(k) and y(n)⟷Y(k);
N−1∑n=0x(n)y∗(n)=1NN−1∑n=0X(k).Y∗(k)