When the denominators of any fractions are unequal or are different those fractions are called unlike fractions.
Operations like addition and subtraction cannot be done directly on unlike fractions.
These unlike fractions are first converted into like fractions by finding the least common denominator of these fractions and rewriting the fractions into equivalent fractions with same denominators (LCD)
When fractions with different or unlike fractions are to be added, first the least common denominator of the fractions is found. The equivalent fractions of given fractions are found with LCD as the common denominator. The numerators are now added and the result is put over the LCD to get the sum of fractions.
When fractions with different or unlike fractions are to be subtracted, first the least common denominator of the fractions is found. The equivalent fractions of given fractions are found with LCD as the common denominator. The numerators are now subtracted and the result is put over the LCD to get the difference of the given fractions.
Add $\frac{1}{5}$ + $\frac{2}{7}$
Step 1:
Add $\frac{1}{5}$ + $\frac{2}{7}$
Here the denominators are different. As 5 and 7 are prime the LCD is their product 35.
Step 2:
Rewriting
$\frac{1}{5}$ + $\frac{2}{7}$ = $\frac{(1×7)}{(5×7)}$ + $\frac{(2×5)}{(7×5)}$ = $\frac{7}{35}$ + $\frac{10}{35}$
As the denominators have become equal
$\frac{7}{35}$ + $\frac{10}{35}$ = $\frac{(7+10)}{35}$ = $\frac{17}{35}$
So, $\frac{1}{5}$ + $\frac{2}{7}$ = $\frac{17}{35}$
Subtract $\frac{2}{15}$ − $\frac{1}{10}$
Step 1:
Subtract $\frac{2}{15}$ − $\frac{1}{10}$
Here the denominators are different. The LCM of 10 and 15 is 30.
Step 2:
Rewriting
$\frac{2}{15}$ − $\frac{1}{10}$ = $\frac{(2×2)}{(15×2)}$ − $\frac{(1×3)}{(10×3)}$ = $\frac{4}{30}$ − $\frac{3}{30}$
As the denominators have become equal
$\frac{4}{30}$ − $\frac{3}{30}$ = $\frac{(4−3)}{30}$ = $\frac{1}{30}$
So, $\frac{2}{15}$ − $\frac{1}{10}$ = $\frac{1}{30}$