Following quiz provides Multiple Choice Questions (MCQs) related to Writing an Equation to Represent a Proportional Relationship. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.
x | 5 | 6 | 8 | 15 | 20 |
y | 20 | 24 | 32 | 60 | 80 |
Step 1:
From given table of values
$\frac{y}{x} = \frac{20}{5} = \frac{24}{6} = \frac{32}{8}… = \frac{4}{1}$
Step 2:
So, the equation representing this proportional relationship is $y = \frac{4}{1} \times \frac{x}{1} = \frac{4x}{1} = 4x$
or $y = 4x$
m | 6 | 12 | 18 | 22 | 24 |
n | 9 | 18 | 27 | 33 | 36 |
Step 1:
From given table of values
$\frac{n}{m} = \frac{9}{6} = \frac{18}{12} = \frac{27}{18}…= \frac{3}{2}$
Step 2:
So, the equation representing this proportional relationship is $n = \frac{3}{2} \times \frac{m}{1} = \frac{3m}{2}$
or $n = \frac{3m}{2}$
c | 3 | 9 | 15 | 21 | 33 |
d | 4 | 12 | 20 | 28 | 44 |
Step 1:
From given table of values
$\frac{d}{c} = \frac{4}{3} = \frac{12}{9} = \frac{20}{15}… = \frac{4}{3}$
Step 2:
So, the equation representing this proportional relationship is $d = \frac{4}{3} \times \frac{c}{1} = \frac{4c}{3}$
or $d = \frac{4c}{3}$
k | 3 | 12 | 15 | 27 | 36 |
l | 7 | 28 | 35 | 63 | 84 |
Step 1:
From given table of values
$\frac{l}{k} = \frac{7}{3} = \frac{28}{12} = \frac{35}{15}… = \frac{7}{3}$
Step 2:
So, the equation representing this proportional relationship is $l = \frac{7}{3} \times \frac{k}{1} = \frac{7k}{3}$
or $l = \frac{7k}{3}$
y | 6 | 18 | 24 | 39 | 48 |
z | 14 | 42 | 56 | 91 | 112 |
Step 1:
From given table of values
$\frac{y}{z} = \frac{14}{6} = \frac{42}{18} = \frac{56}{24}… = \frac{7}{3}$
Step 2:
So, the equation representing this proportional relationship is $y = \frac{7}{3} \times \frac{z}{1} = \frac{7z}{3}$
or $y = \frac{7z}{3}$
a | 5 | 7 | 8 | 9 | 11 |
b | 15 | 21 | 24 | 27 | 33 |
Step 1:
From given table of values
$\frac{b}{a} = \frac{15}{5} = \frac{21}{7} = \frac{24}{8}… = \frac{3}{1}$
Step 2:
So, the equation representing this proportional relationship is $b = \frac{3}{1} \times \frac{a}{1} = \frac{3a}{1} = 3a$
or b = 3a
p | 6 | 10 | 13 | 14 | 18 |
q | 18 | 30 | 39 | 42 | 54 |
Step 1:
From given table of values
$\frac{q}{p} = \frac{18}{6} = \frac{30}{10} = \frac{39}{13}… = \frac{3}{1}$
Step 2:
So, the equation representing this proportional relationship is $q = \frac{3}{1} \times \frac{p}{1} = \frac{3p}{1} = 3p$
or q = 3p
r | 10 | 20 | 30 | 40 | 50 |
s | 6 | 12 | 18 | 24 | 30 |
Step 1:
From given table of values
$\frac{s}{r} = \frac{6}{10} = \frac{12}{20} = \frac{18}{30}… = \frac{3}{5}$
Step 2:
So, the equation representing this proportional relationship is $s = \frac{3}{5} \times \frac{r}{1} = \frac{3r}{5}$
or $s = \frac{3r}{5}$
i | 10 | 20 | 30 | 40 | 50 |
j | 8 | 16 | 24 | 32 | 40 |
Step 1:
From given table of values
$\frac{j}{i} = \frac{8}{10} = \frac{16}{20} = \frac{24}{30}… = \frac{4}{5}$
Step 2:
So, the equation representing this proportional relationship is $j = \frac{4}{5} \times \frac{i}{1} = \frac{4i}{5}$
or $j = \frac{4i}{5}$
u | 2 | 16 | 24 | 32 | 40 |
v | 7 | 56 | 84 | 112 | 140 |
Step 1:
From given table of values
$\frac{v}{u} = \frac{7}{2} = \frac{56}{16} = \frac{84}{24}… = \frac{7}{2}$
Step 2:
So, the equation representing this proportional relationship is $v = \frac{7}{2} \times \frac{u}{1} = \frac{7u}{2}$
or $v = \frac{7u}{2}$