Following quiz provides Multiple Choice Questions (MCQs) related to Finding Missing Values in a Table of Equivalent Ratios. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.
2 | 7 |
x | 14 |
6 | y |
8 | 28 |
Step 1:
From the given table of values
$\frac{x}{14} = \frac{2}{7}; x = \frac{2}{7} \times \frac{14}{1} = 4$
Step 2:
$\frac{y}{6} = \frac{7}{2}; y = \frac{7}{2} \times 6 = \frac{7}{2} \times \frac{6}{1} = 21$
Step 3:
So, $x = 4; y = 21$
4 | 9 |
8 | 18 |
12 | x |
y | 36 |
Step 1:
From the given table of values
$\frac{x}{12} = \frac{9}{4}; x = \frac{9}{4} \times 12 = \frac{9}{4} \times \frac{12}{1} = 27$
Step 2:
$\frac{y}{36} = \frac{4}{9}; y = \frac{4}{9} \times 36 = \frac{4}{9} \times \frac{36}{1} = 16$
Step 3:
So, $x = 27; y = 16$
3 | 10 |
6 | x |
9 | 30 |
y | 40 |
Step 1:
From the given table of values
$\frac{x}{6} = \frac{10}{3}; x = \frac{10}{3} \times 6 = \frac{10}{3} \times \frac{6}{1} = 20$
Step 2:
$\frac{y}{40} = \frac{3}{10}; y = \frac{3}{10} \times 40 = \frac{3}{10} \times \frac{40}{1} = 12$
Step 3:
So, $x = 20; y = 12$
2 | 9 |
4 | x |
6 | 27 |
y | 36 |
Step 1:
From the given table of values
$\frac{x}{4} = \frac{9}{2}; x = \frac{9}{2} \times 4 = \frac{9}{2} \times \frac{4}{1} = 18$
Step 2:
$\frac{y}{36} = \frac{2}{9}; y = \frac{2}{9} \times 36 = \frac{2}{9} \times \frac{36}{1} = 8$
Step 3:
So, $x = 18; y = 8$
3 | 7 |
6 | 14 |
x | 21 |
12 | y |
Step 1:
From the given table of values
$\frac{x}{21} = \frac{3}{7}; x = \frac{3}{7} \times \frac{21}{1} = \frac{3}{7} \times \frac{21}{1} = 9$
Step 2:
$\frac{y}{12} = \frac{7}{3}; y = \frac{7}{3} \times 12 = \frac{7}{3} \times \frac{12}{1} = 28$
Step 3:
So, $x = 9; y = 28$
5 | 7 |
x | 14 |
15 | y |
20 | 28 |
Step 1:
From the given table of values
$\frac{x}{14} = \frac{5}{7}; x = \frac{5}{7} \times 14 = \frac{5}{7} \times \frac{14}{1} = 10$
Step 2:
$\frac{y}{15} = \frac{7}{5}; y = \frac{7}{5} \times 15 = \frac{7}{5} \times \frac{15}{1} = 21$
Step 3:
So, $x = 10; y = 21$
2 | 3 |
4 | 6 |
6 | x |
y | 12 |
Step 1:
From the given table of values
$\frac{x}{6} = \frac{3}{2}; x = \frac{3}{2} \times \frac{6}{1} = \frac{3}{2} \times \frac{6}{1} = 9$
Step 2:
$\frac{y}{12} = \frac{2}{3}; y = \frac{2}{3} \times 12 = \frac{2}{3} \times \frac{12}{1} = 8$
Step 3:
So, $x = 9; y = 8$
4 | 5 |
x | 10 |
12 | y |
16 | 20 |
Step 1:
From the given table of values
$\frac{x}{10} = \frac{4}{5}; x = \frac{4}{5} \times 10 = \frac{4}{5} \times \frac{10}{1} = 8$
Step 2:
$\frac{y}{12} = \frac{5}{4}; y = \frac{5}{4} \times 12 = \frac{5}{4} \times \frac{12}{1} = 15$
Step 3:
So, $x = 8; y = 15$
2 | 5 |
4 | 10 |
6 | x |
y | 20 |
Step 1:
From the given table of values
$\frac{x}{6} = \frac{5}{2}; x = \frac{5}{2} \times 6 = \frac{5}{2} \times \frac{6}{1} = 15$
Step 2:
$\frac{y}{20} = \frac{2}{5}; y = \frac{2}{5} \times 20 = \frac{2}{5} \times \frac{20}{1} = 8$
Step 3:
So, $x = 15; y = 8$
4 | 7 |
x | 14 |
12 | y |
16 | 28 |
Step 1:
$\frac{x}{14} = \frac{4}{7}; x = \frac{4}{7} \times 14 = \frac{4}{7} \times \frac{14}{1} = 8$
Step 2:
$\frac{y}{12} = \frac{7}{4}; y = \frac{7}{4} \times 12 = \frac{7}{4} \times \frac{12}{1} = 21$
Step 3:
So, $x = 8; y = 21$