In the below example we divide a given text into different lines by using the function sent_tokenize.
import nltk sentence_data = "The First sentence is about Python. The Second: about Django. You can learn Python,Django and Data Ananlysis here. " nltk_tokens = nltk.sent_tokenize(sentence_data) print (nltk_tokens)
When we run the above program, we get the following output −
['The First sentence is about Python.', 'The Second: about Django.', 'You can learn Python,Django and Data Ananlysis here.']
In the below example we tokenize the German text.
import nltk german_tokenizer = nltk.data.load('tokenizers/punkt/german.pickle') german_tokens=german_tokenizer.tokenize('Wie geht es Ihnen? Gut, danke.') print(german_tokens)
When we run the above program, we get the following output −
['Wie geht es Ihnen?', 'Gut, danke.']
We tokenize the words using word_tokenize function available as part of nltk.
import nltk word_data = "It originated from the idea that there are readers who prefer learning new skills from the comforts of their drawing rooms" nltk_tokens = nltk.word_tokenize(word_data) print (nltk_tokens)
When we run the above program we get the following output −
['It', 'originated', 'from', 'the', 'idea', 'that', 'there', 'are', 'readers', 'who', 'prefer', 'learning', 'new', 'skills', 'from', 'the', 'comforts', 'of', 'their', 'drawing', 'rooms']