Inner product is a function which gives a scalar to a pair of vectors.
Inner Product − f:Rn×Rn→κ where κ is a scalar.
The basic characteristics of inner product are as follows −
Let X∈Rn
⟨x,x⟩≥0,∀x∈X
⟨x,x⟩=0⇔x=0,∀x∈X
⟨αx,y⟩=α⟨x,y⟩,∀α∈κand∀x,y∈X
⟨x+y,z⟩=⟨x,z⟩+⟨y,z⟩,∀x,y,z∈X
⟨¯y,x⟩=(x,y),∀x,y∈X
Note −
Relationship between norm and inner product: ‖
\forall x,y \in \mathbb{R}^n,\left \langle x,y \right \rangle=x_1y_1+x_2y_2+...+x_ny_n
1. find the inner product of x=\left ( 1,2,1 \right )\: and \: y=\left ( 3,-1,3 \right )
\left \langle x,y \right \rangle =x_1y_1+x_2y_2+x_3y_3
\left \langle x,y \right \rangle=\left ( 1\times3 \right )+\left ( 2\times-1 \right )+\left ( 1\times3 \right )
\left \langle x,y \right \rangle=3+\left ( -2 \right )+3
\left \langle x,y \right \rangle=4
2. If x=\left ( 4,9,1 \right ),y=\left ( -3,5,1 \right ) and z=\left ( 2,4,1 \right ), find \left ( x+y,z \right )
As we know, \left \langle x+y,z \right \rangle=\left \langle x,z \right \rangle+\left \langle y,z \right \rangle
\left \langle x+y,z \right \rangle=\left ( x_1z_1+x_2z_2+x_3z_3 \right )+\left ( y_1z_1+y_2z_2+y_3z_3 \right )
\left \langle x+y,z \right \rangle=\left \{ \left ( 4\times 2 \right )+\left ( 9\times 4 \right )+\left ( 1\times1 \right ) \right \}+
\left \{ \left ( -3\times2 \right )+\left ( 5\times4 \right )+\left ( 1\times 1\right ) \right \}
\left \langle x+y,z \right \rangle=\left ( 8+36+1 \right )+\left ( -6+20+1 \right )
\left \langle x+y,z \right \rangle=45+15
\left \langle x+y,z \right \rangle=60