Processing math: 32%

Convex Optimization - Inner Product


Advertisements

Inner product is a function which gives a scalar to a pair of vectors.

Inner Product − f:Rn×Rnκ where κ is a scalar.

The basic characteristics of inner product are as follows −

Let XRn

  • x,x0,xX

  • x,x=0x=0,xX

  • αx,y=αx,y,ακandx,yX

  • x+y,z=x,z+y,z,x,y,zX

  • ¯y,x=(x,y),x,yX

Note

  • Relationship between norm and inner product:

  • \forall x,y \in \mathbb{R}^n,\left \langle x,y \right \rangle=x_1y_1+x_2y_2+...+x_ny_n

Examples

1. find the inner product of x=\left ( 1,2,1 \right )\: and \: y=\left ( 3,-1,3 \right )

Solution

\left \langle x,y \right \rangle =x_1y_1+x_2y_2+x_3y_3

\left \langle x,y \right \rangle=\left ( 1\times3 \right )+\left ( 2\times-1 \right )+\left ( 1\times3 \right )

\left \langle x,y \right \rangle=3+\left ( -2 \right )+3

\left \langle x,y \right \rangle=4

2. If x=\left ( 4,9,1 \right ),y=\left ( -3,5,1 \right ) and z=\left ( 2,4,1 \right ), find \left ( x+y,z \right )

Solution

As we know, \left \langle x+y,z \right \rangle=\left \langle x,z \right \rangle+\left \langle y,z \right \rangle

\left \langle x+y,z \right \rangle=\left ( x_1z_1+x_2z_2+x_3z_3 \right )+\left ( y_1z_1+y_2z_2+y_3z_3 \right )

\left \langle x+y,z \right \rangle=\left \{ \left ( 4\times 2 \right )+\left ( 9\times 4 \right )+\left ( 1\times1 \right ) \right \}+

\left \{ \left ( -3\times2 \right )+\left ( 5\times4 \right )+\left ( 1\times 1\right ) \right \}

\left \langle x+y,z \right \rangle=\left ( 8+36+1 \right )+\left ( -6+20+1 \right )

\left \langle x+y,z \right \rangle=45+15

\left \langle x+y,z \right \rangle=60