Following quiz provides Multiple Choice Questions (MCQs) related to Converting a Fraction to a Terminating Decimal Basic. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.
Step 1:
We write an equivalent fraction of $\frac{3}{25}$ with a denominator 100.
$\frac{3}{25} = \frac{\left ( 3 \times 4 \right )}{\left ( 25 \times 4 \right )} = \frac{12}{100}$
Step 2:
Shifting the decimal one place to the left we get $\frac{12}{100} = 0.12$
Step 3:
So, $\frac{3}{25} = 0.12$, a terminating decimal.
Step 1:
By long division of $\frac{5}{16}$, we get $\frac{5}{16} = 0.3125$
Step 2:
So, $\frac{5}{16} = 0.3125$, a terminating decimal.
Step 1:
By long division of $\frac{7}{32}$, we get $\frac{7}{32} = 0.21875$
Step 2:
So, $\frac{7}{32} = 0.21875$, a terminating decimal.
Step 1:
By long division of $\frac{5}{64}$, we get $\frac{5}{64} = 0.078125$
Step 2:
So, $\frac{5}{64} = 0.078125$, a terminating decimal.
Step 1:
By long division of $\frac{7}{16}$, we get $\frac{7}{16} = 0.4375$
Step 2:
So, $\frac{7}{16} = 0.4375$, a terminating decimal.
Step 1:
By long division of $\frac{9}{32}$, we get $\frac{9}{32} = 0.28125$
Step 2:
So, $\frac{9}{32} = 0.28125$, a terminating decimal.
Step 1:
We write an equivalent fraction of $\frac{7}{25}$ with a denominator 100.
$\frac{7}{25} = \frac{\left ( 7 \times 4 \right )}{\left ( 25 \times 4 \right )} = \frac{28}{100}$
Step 2:
Shifting the decimal two places to the left we get $\frac{28}{100} = 0.28$
Step 3:
So, $\frac{28}{100} = 0.28$, a terminating decimal.
Step 1:
By long division of $\frac{9}{64}$, we get $\frac{9}{64} = 0.140625$
Step 2:
So, $\frac{9}{64} = 0.140625$, a terminating decimal.
Step 1:
By long division of $\frac{13}{16}$, we get $\frac{13}{16} = 0.8125$
Step 2:
So, $\frac{13}{16} = 0.8125$, a terminating decimal.
Step 1:
By long division of $\frac{15}{32}$, we get $\frac{15}{32} = 0.46875$
Step 2:
So, $\frac{15}{32} = 0.46875$, a terminating decimal.