Converting a Fraction to a Repeating Decimal Basic Online Quiz


Advertisements

Following quiz provides Multiple Choice Questions (MCQs) related to Converting a Fraction to a Repeating Decimal Basic. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Questions and Answers
Q 1 - Convert the fraction $\mathbf {\frac{2}{9}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : B

Explanation

Step 1:

Using long division, $\frac{2}{9} = 0.222...$

Step 2:

Putting a bar over repeating 2, we get $0.222... = 0.\bar{2}$

Step 3:

So, $\frac{2}{9} = 0.\bar{2}$

Q 2 - Convert the fraction $\mathbf {\frac{8}{9}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : C

Explanation

Step 1:

Using long division, $\frac{8}{9} = 0.888...$

Step 2:

Putting a bar over repeating 8, we get $0.888... = 0.\bar{8}$

Step 3:

So, $\frac{8}{9} = 0.\bar{8}$

Q 3 - Convert the fraction $\mathbf {\frac{3}{11}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : A

Explanation

Step 1:

Using long division, $\frac{3}{11} = 0.272727...$

Step 2:

Putting a bar over repeating 27, we get $0.272727.... = 0.\overline{27}$

Step 3:

So, $\frac{3}{11} = 0.\overline{27}$

Q 4 - Convert the fraction $\mathbf {\frac{5}{11}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : D

Explanation

Step 1:

Using long division, $\frac{5}{11} = 0.454545...$

Step 2:

Putting a bar over repeating 45, we get $0.454545.... = 0.\overline{45}$

Step 3:

So, $\frac{5}{11} = 0.\overline{45}$

Q 5 - Convert the fraction $\mathbf {\frac{7}{11}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : C

Explanation

Step 1:

Using long division, $\frac{7}{11} = 0.636363... = 0.\overline{63}$

Step 2:

Putting a bar over repeating 63, we get $0.6363... = 0.\overline{63}$

Step 3:

So, $\frac{7}{11} = 0.\overline{63}$

Q 6 - Convert the fraction $\mathbf {\frac{5}{12}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : A

Explanation

Step 1:

Using long division, $\frac{5}{12} = 0.41666... = 0.41\bar{6}$

Step 2:

Putting a bar over repeating 6, we get $0.41666... = 0.41\bar{6}$

Step 3:

So, $\frac{5}{12} = 0.41\bar{6}$

Q 7 - Convert the fraction $\mathbf {\frac{7}{15}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : B

Explanation

Step 1:

Using long division, $\frac{7}{15} = 0.4666... = 0.4\bar{6}$

Step 2:

Putting a bar over repeating 6, we get $0.4666... = 0.4\bar{6}$

Step 3:

So, $\frac{7}{15} = 0.4\bar{6}$

Q 8 - Convert the fraction $\mathbf {\frac{7}{12}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : D

Explanation

Step 1:

Using long division, $\frac{7}{12} = 0.58333... = 0.58\bar{3}$

Step 2:

Putting a bar over repeating 3, we get $0.58333... = 0.58\bar{3}$

Step 3:

So, $\frac{7}{12} = 0.58\bar{3}$

Q 9 - Convert the fraction $\mathbf {\frac{8}{15}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : A

Explanation

Step 1:

Using long division, $\frac{8}{15} = 0.5333....$

Step 2:

Putting a bar over repeating 3, we get $0.5333... = 0.5\bar{3}$

Step 3:

So, $\frac{8}{15} = 0.5\bar{3}$

Q 10 - Convert the fraction $\mathbf {\frac{11}{15}}$ into a decimal. If necessary, use a bar to indicate which digit or group of digits repeats.

Answer : C

Explanation

Step 1:

Using long division, $\frac{11}{15} = 0.7333...$

Step 2:

Putting a bar over repeating 3, we get $0.7333.... = 0.7\bar{3}$

Step 3:

So, $\frac{11}{15} = 0.7\bar{3}$

converting_fraction_to_repeating_decimal_basic.htm
Advertisements