In the periodic table, hydrogen is the lightest element, its atomic weight is merely 1.008.
The symbol of hydrogen is ‘H’ and the atomic number is ‘1.’
In the early 16th century, hydrogen gas was first artificially produced by the reaction of acids and metals.
Henry Cavendish first recognized the hydrogen gas a discrete substance during the period of 1766-81, as it produces water when it is burned.
In their plasma state, the non-remnant stars are primarily composed of hydrogen.
At standard temperature and pressure, hydrogen appears colorless, tasteless, odorless, nonmetallic, non-toxic, and highly combustible diatomic gas.
The molecular formula of hydrogen is H2.
On the earth, hydrogen exists in molecular forms, for example, water or other organic compounds.
Hydrogen also plays an important role in acid–base reactions.
Hydrogen gas is highly flammable in the air.
Pure hydrogen-oxygen flames radiate ultraviolet light; further, with high oxygen mix are nearly invisible to the naked eye.
Hydrogen can react with almost every oxidizing element.
At room temperature, Hydrogen normally reacts spontaneously and viciously with chlorine and fluorine and forms the corresponding hydrogen halides.
Consisting roughly about 75 percent of all baryonic mass, hydrogen is the most abundantly found chemical subsistence in the universe.
Throughout the universe, hydrogen is typically found in the atomic and plasma states; however, the properties quite different from those of the molecular hydrogen.
On the earth, hydrogen exists as the diatomic gas, i.e. H2.
Because of having light weight, hydrogen easily escapes from the earth’s atmosphere.
Hydrogen is the third most abundant element found on the Earth's surface, but largely found in form of hydrocarbons and water.
Following are the major compounds of hydrogen −
Water - H2O
Ammonia - NH3
Hydrogen chloride - HCl
Hydrogen fluoride - HF
Hydrogen sulfide - H2S
Methane - CH4
Hydroxide - OH-
Hydrogen bromide - HBr
Hydrogen iodide - HI
Hydrogen cyanide - HCN
Phosphine - PH3
Hydrogen selenide - H2Se
Methanol - CH3OH
Lithium hydride - LiH
Bicarbonate - HCO3
Hydrogen telluride - H2Te
Liquid hydrogen - H2
Cyanide - CN
Calcium hydride - CaH2
Heavy water - D2O
Diborane - B2H6
Sodium hydride - NaH
Potassium hydride - KH
The largest amount of H2 is used in the processing of fossil fuels as well as in the production of ammonia.
Hydrogen (H2) is extensively used in the petroleum and chemical industries.
H2 is typically used as a hydrogenating agent, especially in increasing the saturation level of unsaturated fats and oils.
H2 is also used as a shielding gas in welding procedures, such as atomic hydrogen welding, etc.