Transistor Regions of Operation


Advertisements

The DC supply is provided for the operation of a transistor. This DC supply is given to the two PN junctions of a transistor which influences the actions of majority carriers in these emitter and collector junctions.

The junctions are forward biased and reverse biased based on our requirement. Forward biased is the condition where a positive voltage is applied to the p-type and negative voltage is applied to the n-type material. Reverse biased is the condition where a positive voltage is applied to the n-type and negative voltage is applied to the p-type material.

Transistor biasing

The supply of suitable external dc voltage is called as biasing. Either forward or reverse biasing is done to the emitter and collector junctions of the transistor. These biasing methods make the transistor circuit to work in four kinds of regions such as Active region, Saturation region, Cutoff region and Inverse active region (seldom used). This is understood by having a look at the following table.

EMITTER JUNCTION COLLECTOR JUNCTION REGION OF OPERATION
Forward biased Forward biased Saturation region
Forward biased Reverse biased Active region
Reverse biased Forward biased Inverse active region
Reverse biased Reverse biased Cutoff region

Among these regions, Inverse active region, which is just the inverse of active region, is not suitable for any applications and hence not used.

Active region

This is the region in which transistors have many applications. This is also called as linear region. A transistor while in this region, acts better as an Amplifier.

Active Region

This region lies between saturation and cutoff. The transistor operates in active region when the emitter junction is forward biased and collector junction is reverse biased. In the active state, collector current is β times the base current, i.e.,

$$I_{C}\:=\:\beta I_{B}$$

Where,

$I_{C}$ = collector current

$\beta$ = current amplification factor

$I_{B}$ = base current

Saturation region

This is the region in which transistor tends to behave as a closed switch. The transistor has the effect of its collector and Emitter being shorted. The collector and Emitter currents are maximum in this mode of operation.

The figure below shows a transistor working in saturation region.

Saturation Region

The transistor operates in saturation region when both the emitter and collector junctions are forward biased. As it is understood that, in the saturation region the transistor tends to behave as a closed switch, we can say that,

$$I_{C}\:=\:I_{E}$$

Where $I_{C}$ = collector current and $I_{E}$ = emitter current.

Cutoff region

This is the region in which transistor tends to behave as an open switch. The transistor has the effect of its collector and base being opened. The collector, emitter and base currents are all zero in this mode of operation.

The following figure shows a transistor working in cutoff region.

Cutoff Region

The transistor operates in cutoff region when both the emitter and collector junctions are reverse biased. As in cutoff region, the collector current, emitter current and base currents are nil, we can write as

$$I_{C}\:=\:I_{E}\:=\:I_{B}\:=\:0$$

Where $I_{C}$ = collector current, $I_{E}$ = emitter current, and $I_{B}$ = base current.

Advertisements