Complex Fourier transform is also called as Bilateral Laplace Transform. This is used to solve differential equations. Consider an LTI system exited by a complex exponential signal of the form x(t) = Gest.
Where s = any complex number = $\sigma + j\omega$,
σ = real of s, and
ω = imaginary of s
The response of LTI can be obtained by the convolution of input with its impulse response i.e.
$ y(t) = x(t) \times h(t) = \int_{-\infty}^{\infty}\, h (\tau)\, x (t-\tau)d\tau $
$= \int_{-\infty}^{\infty}\, h (\tau)\, Ge^{s(t-\tau)}d\tau $
$= Ge^{st}. \int_{-\infty}^{\infty}\, h (\tau)\, e^{(-s \tau)}d\tau $
$ y(t) = Ge^{st}.H(S) = x(t).H(S)$
Where H(S) = Laplace transform of $h(\tau) = \int_{-\infty}^{\infty} h (\tau) e^{-s\tau} d\tau $
Similarly, Laplace transform of $x(t) = X(S) = \int_{-\infty}^{\infty} x(t) e^{-st} dt\,...\,...(1)$
Laplace transform of $x(t) = X(S) =\int_{-\infty}^{\infty} x(t) e^{-st} dt$
Substitute s= σ + jω in above equation.
$→ X(\sigma+j\omega) =\int_{-\infty}^{\infty}\,x (t) e^{-(\sigma+j\omega)t} dt$
$ = \int_{-\infty}^{\infty} [ x (t) e^{-\sigma t}] e^{-j\omega t} dt $
$\therefore X(S) = F.T [x (t) e^{-\sigma t}]\,...\,...(2)$
$X(S) = X(\omega) \quad\quad for\,\, s= j\omega$
You know that $X(S) = F.T [x (t) e^{-\sigma t}]$
$\to x (t) e^{-\sigma t} = F.T^{-1} [X(S)] = F.T^{-1} [X(\sigma+j\omega)]$
$= {1\over 2}\pi \int_{-\infty}^{\infty} X(\sigma+j\omega) e^{j\omega t} d\omega$
$ x (t) = e^{\sigma t} {1 \over 2\pi} \int_{-\infty}^{\infty} X(\sigma+j\omega) e^{j\omega t} d\omega $
$= {1 \over 2\pi} \int_{-\infty}^{\infty} X(\sigma+j\omega) e^{(\sigma+j\omega)t} d\omega \,...\,...(3)$
Here, $\sigma+j\omega = s$
$jdω = ds → dω = ds/j$
$ \therefore x (t) = {1 \over 2\pi j} \int_{-\infty}^{\infty} X(s) e^{st} ds\,...\,...(4) $
Equations 1 and 4 represent Laplace and Inverse Laplace Transform of a signal x(t).
Dirichlet's conditions are used to define the existence of Laplace transform. i.e.
The function f(t) has finite number of maxima and minima.
There must be finite number of discontinuities in the signal f(t),in the given interval of time.
It must be absolutely integrable in the given interval of time. i.e.
$ \int_{-\infty}^{\infty} |\,f(t)|\, dt \lt \infty $
If the Laplace transform of an unknown function x(t) is known, then it is possible to determine the initial and the final values of that unknown signal i.e. x(t) at t=0+ and t=∞.
Statement: if x(t) and its 1st derivative is Laplace transformable, then the initial value of x(t) is given by
$$ x(0^+) = \lim_{s \to \infty} SX(S) $$
Statement: if x(t) and its 1st derivative is Laplace transformable, then the final value of x(t) is given by
$$ x(\infty) = \lim_{s \to \infty} SX(S) $$