Python - Search Tree


Advertisements

A Binary Search Tree (BST) is a tree in which all the nodes follow the below-mentioned properties − The left sub-tree of a node has a key less than or equal to its parent node's key. The right sub-tree of a node has a key greater than to its parent node's key. Thus, BST divides all its sub-trees into two segments; the left sub-tree and the right sub-tree and can be defined as –

left_subtree (keys)  ≤  node (key)  ≤  right_subtree (keys)

Search for a value in a B-tree

Searching for a value in a tree involves comparing the incoming value with the value exiting nodes. Here also we traverse the nodes from left to right and then finally with the parent. If the searched for value does not match any of the exitign value, then we return not found message else the found message is returned.

class Node:

    def __init__(self, data):

        self.left = None
        self.right = None
        self.data = data

# Insert method to create nodes
    def insert(self, data):

        if self.data:
            if data < self.data:
                if self.left is None:
                    self.left = Node(data)
                else:
                    self.left.insert(data)
            elif data > self.data:
                if self.right is None:
                    self.right = Node(data)
                else:
                    self.right.insert(data)
        else:
            self.data = data
# findval method to compare the value with nodes
    def findval(self, lkpval):
        if lkpval < self.data:
            if self.left is None:
                return str(lkpval)+" Not Found"
            return self.left.findval(lkpval)
        elif lkpval > self.data:
            if self.right is None:
                return str(lkpval)+" Not Found"
            return self.right.findval(lkpval)
        else:
            print(str(self.data) + ' is found')
# Print the tree
    def PrintTree(self):
        if self.left:
            self.left.PrintTree()
        print( self.data),
        if self.right:
            self.right.PrintTree()


root = Node(12)
root.insert(6)
root.insert(14)
root.insert(3)
print(root.findval(7))
print(root.findval(14))

When the above code is executed, it produces the following result −

7 Not Found
14 is found
Advertisements