Fraction Division Online Quiz


Advertisements

Following quiz provides multiplication Choice Questions (MCQs) related to Fraction Division. You will have to read all the given answers and click over the correct answer. If you are not sure about the answer then you can check the answer using Show Answer button. You can use Next Quiz button to check new set of questions in the quiz.

Questions and Answers
Q 1 - Divide $\frac{5}{7}$ ÷ $\frac{9}{7}$

Answer : A

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{5}{7}$ ÷ $\frac{9}{7}$ = $\frac{5}{7}$ × $\frac{7}{9}$ = $\frac{(5×7)}{(7×9)}$ = $\frac{35}{63}$

Step 2:

$\frac{5}{7}$ ÷ $\frac{9}{7}$ = $\frac{35}{63}$

Step 3:

Reducing to lowest terms

$\frac{35}{63}$ = $\frac{5}{9}$

Q 2 - Divide $\frac{4}{9}$ ÷ $\frac{6}{15}$

Answer : B

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{4}{9}$ ÷ $\frac{6}{15}$ = $\frac{4}{9}$ × $\frac{15}{6}$ = $\frac{(4×15)}{(9×6)}$ = $\frac{60}{54}$

Step 2:

$\frac{4}{9}$ ÷ $\frac{6}{15}$ = $\frac{60}{54}$

Step 3:

Reducing to lowest terms

$\frac{60}{54}$ = $\frac{10}{9}$

Q 3 - Divide $\frac{5}{7}$ ÷ $\frac{5}{9}$

Answer : C

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{5}{7}$ ÷ $\frac{5}{9}$ = $\frac{5}{7}$ × $\frac{9}{5}$ = $\frac{(5×9)}{(7×5)}$ = $\frac{45}{35}$

Step 2:

$\frac{5}{7}$ ÷ $\frac{5}{9}$ = $\frac{45}{35}$

Step 3:

Reducing to lowest terms

$\frac{45}{35}$ = $\frac{9}{7}$

Q 4 - Divide $\frac{3}{5}$ ÷ $\frac{8}{10}$

Answer : D

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{3}{5}$ ÷ $\frac{8}{10}$ = $\frac{3}{5}$ × $\frac{10}{8}$ = $\frac{(3×10)}{(5×8)}$ = $\frac{30}{40}$

Step 2:

$\frac{3}{5}$ ÷ $\frac{8}{10}$ $\frac{30}{40}$

Step 3:

Reducing to lowest terms

$\frac{30}{40}$ = $\frac{3}{4}$

Q 5 - Divide $\frac{5}{9}$ ÷ $\frac{7}{9}$

Answer : B

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{5}{9}$ ÷ $\frac{7}{9}$ = $\frac{5}{9}$ × $\frac{9}{7}$ = $\frac{(5×9)}{(9×7)}$ = $\frac{45}{63}$

Step 2:

$\frac{5}{9}$ ÷ $\frac{7}{9}$ = $\frac{45}{63}$

Step 3:

Reducing to lowest terms

$\frac{45}{63}$ = $\frac{5}{7}$

Q 6 - Divide $\frac{4}{7}$ ÷ $\frac{5}{14}$

Answer : C

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{4}{7}$ ÷ $\frac{5}{14}$ = $\frac{4}{7}$ × $\frac{14}{5}$ = $\frac{(4×14)}{(7×5)}$ = $\frac{56}{35}$

Step 2:

$\frac{4}{7}$ ÷ $\frac{5}{14}$ = $\frac{56}{35}$

Step 3:

Reducing to lowest terms

$\frac{56}{35}$ = $\frac{8}{5}$

Q 7 - Divide $\frac{4}{6}$ ÷ $\frac{7}{12}$

Answer : D

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{4}{6}$ ÷ $\frac{7}{12}$ = $\frac{4}{6}$ × $\frac{12}{7}$ = $\frac{(4×12)}{(6×7)}$ = $\frac{48}{42}$

Step 2:

$\frac{4}{6}$ ÷ $\frac{7}{12}$ = $\frac{48}{42}$

Step 3:

Reducing to lowest terms

$\frac{48}{42}$ = $\frac{8}{7}$

Q 8 - Divide $\frac{3}{5}$ ÷ $\frac{7}{15}$

Answer : A

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{3}{5}$ ÷ $\frac{7}{15}$ = $\frac{3}{5}$ × $\frac{15}{7}$ = $\frac{(3×15)}{(5×7)}$ = $\frac{45}{35}$

Step 2:

$\frac{3}{5}$ ÷ $\frac{7}{15}$ = $\frac{45}{35}$

Step 3:

Reducing to lowest terms

$\frac{45}{35}$ = $\frac{9}{7}$

Q 9 - Divide $\frac{5}{7}$ ÷ $\frac{8}{7}$

Answer : C

Explanation

Step 1:

$\frac{5}{7}$ ÷ $\frac{8}{7}$

Rewriting division as a multiplication operation

$\frac{5}{7}$ ÷ $\frac{8}{7}$ = $\frac{5}{7}$ × $\frac{7}{8}$ = $\frac{(5×7)}{(7×8)}$ = $\frac{35}{56}$

Step 2:

$\frac{5}{7}$ ÷ $\frac{8}{7}$ = $\frac{35}{56}$

Step 3:

Reducing to lowest terms

$\frac{35}{56}$ = $\frac{5}{8}$

Q 10 - Divide $\frac{5}{9}$ ÷ $\frac{7}{12}$

Answer : D

Explanation

Step 1:

Rewriting division as a multiplication operation

$\frac{5}{9}$ ÷ $\frac{7}{12}$ = $\frac{5}{9}$ × $\frac{12}{7}$ = $\frac{(5×12)}{(9×7)}$ = $\frac{60}{63}$

Step 2:

$\frac{5}{9}$ ÷ $\frac{7}{12}$ = $\frac{60}{63}$

Step 3:

Reducing to lowest terms

$\frac{60}{63}$ = $\frac{20}{21}$

fraction_division.htm
Advertisements